Table 2: Effect of dietary supplementation with some medicinal and aromatic plants on growth performance, economical efficiency and viability (%) of growing NZW rabbits.

Item	<u></u>	Experimental diets						
%	\mathbf{c}	P1	P2	Р3	P4	Significance		
No of rabbits	8	8	8	8	8	-		
Body weight (g) at:								
6 weeks	854.87±8.5	870±3.02	861±3.06	847±4.04	850±4.9	NS		
13 weeks	1938 ± 9^{d}	1958±9.7°	2046 ± 9.8^{b}	$2125{\pm}10^a$	1602 ± 10.1^{e}	**		
Total weight gain (g)	1083.5 ± 15.62^{c}	1088 ± 7.27^{c}	1185±8.96 ^b	1278±9.63 a	752 ± 6.68^{d}	**		
Daily weight gain (g)	22.11±1.23°	22.20 ± 0.64^{c}	24.18 ± 0.28^{b}	26.07 ± 0.37^a	15.35 ± 0.95^{d}	**		
Daily feed consumption (g)	80.03 ± 2.4^{b}	82.37±3.9 b	83.96 ± 4.4^{ab}	88.91 ± 3.9^{a}	73.22±4.33°	**		
Feed conversion	3.66 ± 0.03^{b}	3.72 ± 0.03^{b}	3.42 ± 0.04^{c}	3.35 ± 0.03^{c}	4.74 ± 0.04^{a}	**		
PI (%)	$52.87 \pm 0.63^{\circ}$	52.45±0.61°	59.92 ± 0.62^{b}	63.46 ± 0.53^{a}	33.74 ± 0.21^{d}	**		
Viability %	100	75	87.5	100	62.5	-		
Total feed cost (L.E.) ¹	11.01	11.73	12.04	12.39	10.49	-		
Feed cost/Kg gain (L.E.)	10.166	12.762	10.164	9.695	13.950	-		
Economical efficiency (%) ²	136.08	122.61	136.14	151.79	72.05	-		
Relative economical efficiency	100	90.105	100.1	134.35	52.947	-		

 $[\]overline{a, b, c, d}$ Means in the same row bearing different letters, differ significantly (P< 0.05).

Experimental diets P1, P2. P3 and P4 supplemented with 1% Basil, chamomile, fennel and ginger, respectively.

Total feed cost (L.E.) = feed price / kg (L.E.) x total feed intake (Kg).

Economical efficiency based on that the price of 100 kilogram of diet C, P1, P2, P3 and P4 was 274.5, 290.5, 295.5, 284.5 and 292.5 Egyptian pound (L.E.) respectively and the price of one kilogram of live body weight at selling time was 24 L.E.

NS = not significant * P < 0.05

^{**} P < 0.01

Table 3: Effect of dietary supplementation with some medicinal and aromatic plants on coefficients of nutrients, nutritive values and nitrogen utilization of growing NZW rabbits.

Item		Experimental diets					
	C	P1	P2	P3	Р3	Significance	
Nutrients appearance dige	stibility coefficie	nts :					
Dry matter (DM)	$68.64 \pm 0.85^{\text{b}}$	68.46±0.55 ^b	70.45 ± 0.38^{a}	71.89 ± 1.25^{a}	64.95 ± 0.29^{c}	**	
Organic matter (OM)	68.74 ± 0.84^{ab}	68.49 ± 0.90^{b}	71.11 ± 0.68^{ab}	72.10±1.21 ^a	64.13 ± 1.70^{c}	**	
Crude protein (CP)	68.26 ± 0.87^{b}	67.88 ± 0.84^{b}	71.04 ± 0.28^{a}	72.30 ± 0.87^{a}	64.55 ± 0.98^{c}	**	
Crude fiber (CF)	75.46 ± 0.67^{a}	75.32 ± 0.56^{a}	76.34 ± 0.38^{a}	76.65 ± 0.58^{a}	68.11 ± 1.33^{b}	**	
Ether extract (EE)	38.97 ± 0.48^{ab}	37.90 ± 0.56^{b}	40.66±0.91 ^a	41.35 ± 1.02^{a}	35.21 ± 0.79^{c}	**	
Nitrogen free ext. (NFE)	76.11 ± 1.20^{ab}	76.03 ± 1.18^{ab}	78.47 ± 0.67^{a}	80.15 ± 1.75^{a}	72.02 ± 1.69^{b}	**	
Nutritive value :							
TDN	64.77 ± 0.97^{ab}	$64.17\pm0.8~2^{b}$	66.58 ± 0.65^{ab}	67.5 ± 1.04^{a}	60.54 ± 1.31^{c}	**	
DCP	10.77 ± 0.14^{b}	10.71 ± 0.14^{b}	11.21 ± 0.12^{a}	11.41 ± 0.13^{a}	10.19 ± 0.15^{c}	*	
ME (Kcal/ kg DM) ¹	2830.9 ± 17.6^{b}	2823.9 ± 31.8^{b}	2901.9 ± 9.4^{ab}	2958.3 ± 16.4^{a}	2686.3±14.3°	*	
Nitrogen utilization:							
N-intake (g/day)	2.98 ± 0.04^{d}	3.42 ± 0.04^{a}	3.15 ± 0.02^{c}	3.31 ± 0.02^{b}	2.74 ± 0.02^{e}	**	
Fecal-N (g/day	0.94 ± 0.01^{bc}	1.10 ± 0.02^{a}	$0.91\pm.02^{c}$	0.91 ± 0.02^{bc}	0.97 ± 0.02^{b}	**	
Urinary-N (g/day)	1.12 ± 0.04	1.11 ± 0.05	1.10 ± 0.05	1.14 ± 0.07	0.96 ± 0.06	NS	
N-digested (g/day)	2.03 ± 0.05^{c}	2.32 ± 0.05^{ab}	2.23 ± 0.03^{b}	2.39 ± 0.04^{a}	1.77 ± 0.04^{d}	**	
N-retained (g/day)	0.91 ± 0.01^{c}	1.21 ± 0.01^{ab}	1.135 ± 0.03^{b}	1.25 ± 0.04^{a}	0.80 ± 0.03^{d}	**	
N-balance (g/day) % of N-intake	30.54±0.46 ^b	35.46±0.68 ^a	36.01±1.15 ^a	37.83±1.56 ^a	29.42±1.5 ^b	**	

a, b, c, d Means in the same row bearing different letters, differ significantly (P< 0.05). 1 ME (Kcal/ kg DM) = (0.588 + 0.164 X) 239, Were X is the dry matter digestion of the offered diet.

Experimental diets P1, P2. P3 and P4 supplemented with 1% Basil, chamomile, fennel and ginger, respectively. ** P < 0.01

NS = not significant

^{*} P< 0.05

Table 4: Effect of dietary supplementation with some medicinal and aromatic plants on chemical composition of hard and soft feces of growing NZW rabbits.

Chemical composition	Experimental diets							
of feces	C	P1	P2	Р3	Р3	Significance		
(%)		Soft feces						
Dry matter (DM)	35.01±2.02	36.24±1.26	36.02±0.83	35.72±0.86	35.23±0.85	NS		
DM basis (%):								
Crude protein (CP)	28.24 ± 1.22^{c}	30.92 ± 0.91^{ab}	31.26 ± 1.20^{ab}	33.00 ± 0.57^{a}	26.14±0.82°	**		
Ether extract (EE)	2.75±0.21	2.64±0.07	2.51±0.15	2.79 ± 0.37	2.69±0.17	NS		
Crude fiber (CF)	16.59±1.24 ^{ab}	13.91±0.69 ^{bc}	14.78 ± 0.89^{b}	13.42 ± 0.70^{c}	18.32±0.84 ^a	*		
Ash	8.49±0.21	7.68±0.33	8.24±0.38	8.11±0.58	7.32±0.40	NS		
				Hard feces				
Dry matter (DM)	62.61±1.79 ^a	60.22±1.76 ^{ab}	59.07±1.58°	59.48±1.58 ^{bc}	58.72±1.81°	**		
DM basis (%):								
Crude protein (CP)	13.65±0.15	12.18±0.51	12.69±0.80	12.06±0.21	14.29±0.93	NS		
Ether extract (EE)	3.28±0.23	3.09 ± 0.1	3.52±0.32	3.12±.014	3.48±0.26	NS		
Crude fiber (CF)	23.55±0.24	21.64±0.82	23.08±0.85	22.81±0.93	24.19±1.25	NS		
Ash	10.22±0.43	10.68±1.25	11.01±0.40	11.31±0.42	11.82±0.38	NS		

 $^{^{}a, b, c, d}$ Means in the same row bearing different letters, differ significantly (P< 0.05).

Experimental diets P1, P2. P3 and P4 supplemented with 1% Basil, chamomile, fennel and ginger, respectively.

NS = Not significant

* P< 0.05

** P < 0.01

Table 5 : Effect of dietary supplementation with some medicinal and aromatic plants on carcass traits and internal organs relative to preslaughter weight of growing NZW rabbits.

Items		Experimental diets				
	C	P1	P2	Р3	P4	Significance
Preslaughter weight (g)	1947±11.27°	1966±19.47°	2065±12.5 ^b	2147±14.3°	1626±12.5 ^d	**
Hot carcass weight (g)	1138.0±21.12°	1161.0±23.41°	1251.2 ± 6.57^{ab}	1317.5±4.41 ^a	914.5 ± 19.18^{c}	**
Dressing (%)	58.45 ± 1.87^{b}	59.05 ± 1.52^{b}	59.14 ± 2.35^{b}	61.36 ± 1.35^{a}	56.24 ± 1.37^{c}	**
Cold carcass weight (g)	1122.1 ± 15.8^{c}	1142.4 ± 19.6^{c}	1231.8±11.9 ^b	1298.8 ± 13.8^{a}	899.8 ± 12.4^{d}	**
Carcass drip loss (%)	1.397 ± 0.23	1.602 ± 0.14	1.551 ± 0.28	1.419±0.26	1.607 ± 0.18	NS
Alimentary tract full (g)	279.46 ± 7.8^{ab}	287.49 ± 8.7^{a}	292.4 ± 6.4^{a}	299.73 ± 6.4^{a}	262.28 ± 4.9^{b}	*
Alimentary tract as % of	body weight:					
Full	14.35 ± 0.4^{b}	14.62±0.41 ^b	14.17±0.39 ^b	13.96±0.21 ^b	16.13 ± 0.22^{a}	**
Empty	0.94 ± 0.04^{ab}	0.95 ± 0.04^{ab}	0.93 ± 0.02^{ab}	0.85 ± 0.03^{b}	1.03 ± 0.014^{a}	*
Giblets weight (%) of boo	ly weight:					
Liver (%)	2.21 ± 0.09^{b}	2.42 ± 0.12^{ab}	2.56 ± 0.14^{ab}	2.67 ± 0.13^{a}	2.77 ± 0.11^{a}	*
Kidneys (%)	0.55 ± 0.02	0.57 ± 0.009	0.56 ± 0.02	0.54 ± 0.02	0.54 ± 0.22	NS
Spleen (%)	0.03 ± 0.004	0.028 ± 0.001	0.029 ± 0.002	0.029 ± 0.003	0.03 ± 0.002	NS

 $[\]frac{1}{a,b,c,d}$ Means in the same row bearing different letters, differ significantly (P< 0.05).

Experimental diets P1, P2. P3 and P4 supplemented with 1% Basil, chamomile, fennel and ginger, respectively.

NS = Not significant * F

* P< 0.05

** P < 0.01

Table 6: Effect of dietary supplementation with some medicinal and aromatic plants on some blood serum constituents of growing NZW rabbits.

Item		Experimental diets						
	C	P1	P2	Р3	P4	Significance		
Serum constituents:								
Total protein (gm/dl)	6.37 ± 0.27	5.95 ± 0.16	7.87 ± 0.78	6.39 ± 0.48	6.39 ± 0.47	NS		
Albumen (gm/dl)	3.97 ± 0.10^{b}	4.29 ± 0.09^{a}	4.037 ± 0.12^{b}	4.53 ± 0.09^{a}	4.05 ± 0.19^{ab}	*		
Globulin (gm/dl)	2.39 ± 0.3^{b}	1.68 ± 0.23^{b}	3.83 ± 0.66^{a}	1.86 ± 0.45^{b}	2.34 ± 0.38^{b}	*		
Urea	59.97±0.94	58.32±1.56	65.58±4.39	63.82±6.35	69.34±3	NS		
Creatinene	0.91 ± 0.03	1.027±0.09	0.93 ± 0.13	0.79 ± 0.07	1.12±0.15	NS		
GOT(AST)	66.99 ± 1.6^{c}	77.30 ± 5.76^{ab}	80.87 ± 5.63^{a}	65.56±1.89°	85.49 ± 1.64^{a}	**		
GPT(ALT)	74.9 ± 2.17^{ab}	69.61 ± 2.25^{b}	70.97 ± 3.48^{b}	78.05 ± 2.01^{a}	75.37 ± 4.5^{ab}	*		
Total lipids (mg/dl)	86.4 ± 2.03^{a}	88.05 ± 2.05^{a}	95.34 ± 4.79^{a}	50.80±2.11 ^b	49.95±3.1 ^b	**		
Cholesterol (mg/dl)	62.9 ± 1.77^{a}	64.43 ± 2.26^a	62.65±2.31 ^a	43.79 ± 2.53^{b}	46.5±1.91 ^b	*		

a, b, c, d Means in the same row bearing different letters, differ significantly (P< 0.05). Experimental diets P1, P2. P3 and P4 supplemented with 1% Basil, chamomile, fennel and ginger, respectively.

NS = not significant

* P< 0.05

** P < 0.01